

Analysis of the Socio-Environmental Impacts of the Proposed Transboundary Highway between Pucallpa, Peru and Cruzeiro do Sul, Brazil

Frisbie, Anna*; Collard, Elspeth*; Zizzamia, Elizabeth*; Salisbury, David S.*; Galati, Valerie*; Spera, Stephanie* *Department of Geography and the Environment, University of Richmond Association of American Geographers Annual Meeting; Virtual; April 7-11, 2021

Introduction

- The Amazon Biome
- Over 25% of the world's terrestrial species (Malhi et al., 2011, Plotkin, 2020)
- Almost 15% of planet's freshwater (Ghai et al., 2011)
- Nearly 50% of global tropical forest carbon stocks (Saatchi et al., 2011)
- Approximately 20% of planet's terrestrial carbon (Plotkin, 2020)
- Sierra del Divisor region
- Southwestern Amazon
- Borderlands of Peru (Ucayali) and Brazil (Acre)
- o Biodiversity hotspot; 20 mammal species considered 'threatened' (Vriesendorp et al., 2006; Plotkin, 2020)
- o High levels of cultural diversity: nomadic Isconahua, Asháninka, Nawa, rubber tappers, ribereños, farmers, and miners (Salisbury et al., 2013)
- o Forests and watersheds particularly vulnerable to roads and infrastructure development
- In neighboring Madre de Dios, Southworth et al. (2011) found strong influences of deforestation within 18km of the Interoceanic Highway and related roads
- The governments of Brazil (Acre) and Peru (Ucayali) have intensified their promotion of a road bridging the Sierra del Divisor, following previous attempts since 1943 (Salisbury et al., 2013)
- Ecosystem services
- Indigenous tribes in voluntary isolation or initial contact draw 100% of their sustenance from the forests
- o Rural people living in or near tropical forests usually derive more than 20% of their household income from timber, non-timber forest products, or fish (Plotkin, 2020)

Impacts of Roads Hydrological Loss of cultural traditions (Sawyer, Degrades flora, fauna, and Spread of outside diseases to

rainforests (Laurance et al., 2009) • Within 20 km, 75% of deforestation (83%) and

Environmental

waters of tropical

degradation (66%) occurs (Oliveira et al., 2007)

Indigenous peoples with limited immunity (Napolitano, 2007)

 Facilitate illegal trafficking of drugs, weapons, wild animals, resources, and land titles (Young, 2004; Suarez et al.,

 Decreased water quality (Figueiredo et al., 2020; Riskin et al., 2017) Increased stream temperature

> (Figueiredo et al., 2010) Increased sediment concentrations

(Abe et al., 2018) Changing structure and function of

streams (Deegan et al., 2010; Thomaz et al., 2020)

Roads beget other roads, magnifying impacts throughout tropical forest road networks. Limited research exists on the relationship between deforestation and waterways in the western Amazon (Rios-Villamizar

et al., 2017, Thomaz et al., 2020), and even less connecting roads, deforestation, and streams.

Data and Methods

Sources

GTASO Database

HydroRIVERS Database

RAISG

HydroBASINS Database

Table 1. Summary of data used in hydrological and administrative analyses (also see map sources).

- Mixed methods included geospatial analysis (ESRI ArcGIS Pro Version 2.7); data cataloging and refinement; meta-analysis of previous studies on the impact of roads in tropical forests.
- The Brazilian and Peruvian governments each proposed a transboundary road route from Pucallpa, Peru to Cruzeiro do Sul, Brazil; but the roads do not connect
- We thus analyzed the potential transboundary continuation of both routes: Brazil (north road, Fig. 1), and Peru (south road, Fig. 2)
- Created a 20 km impact zone around each route and intersected it with HydroRIVERS (class 1-8) and HydroBASINS (level 8 sub-basins)
- Various administrative units (Fig. 3)

Basins and Rivers Impacted by Proposed Road Pucallpa, Peru - Cruzeiro do Sul, Brasil, North Route Peru **Brazil** Point of Intersection Proposed Road BR 364/PE-18C Alt - International Border Zone of Influence (20 km) Impacted Sub-basin (20 km)

Figure 1. Analysis of potential impacts on rivers and watersheds from the proposed road BR-364/PE-18C Alt. (north/Brazilian-based route) within a 20 km impact zone (highlighted in red).

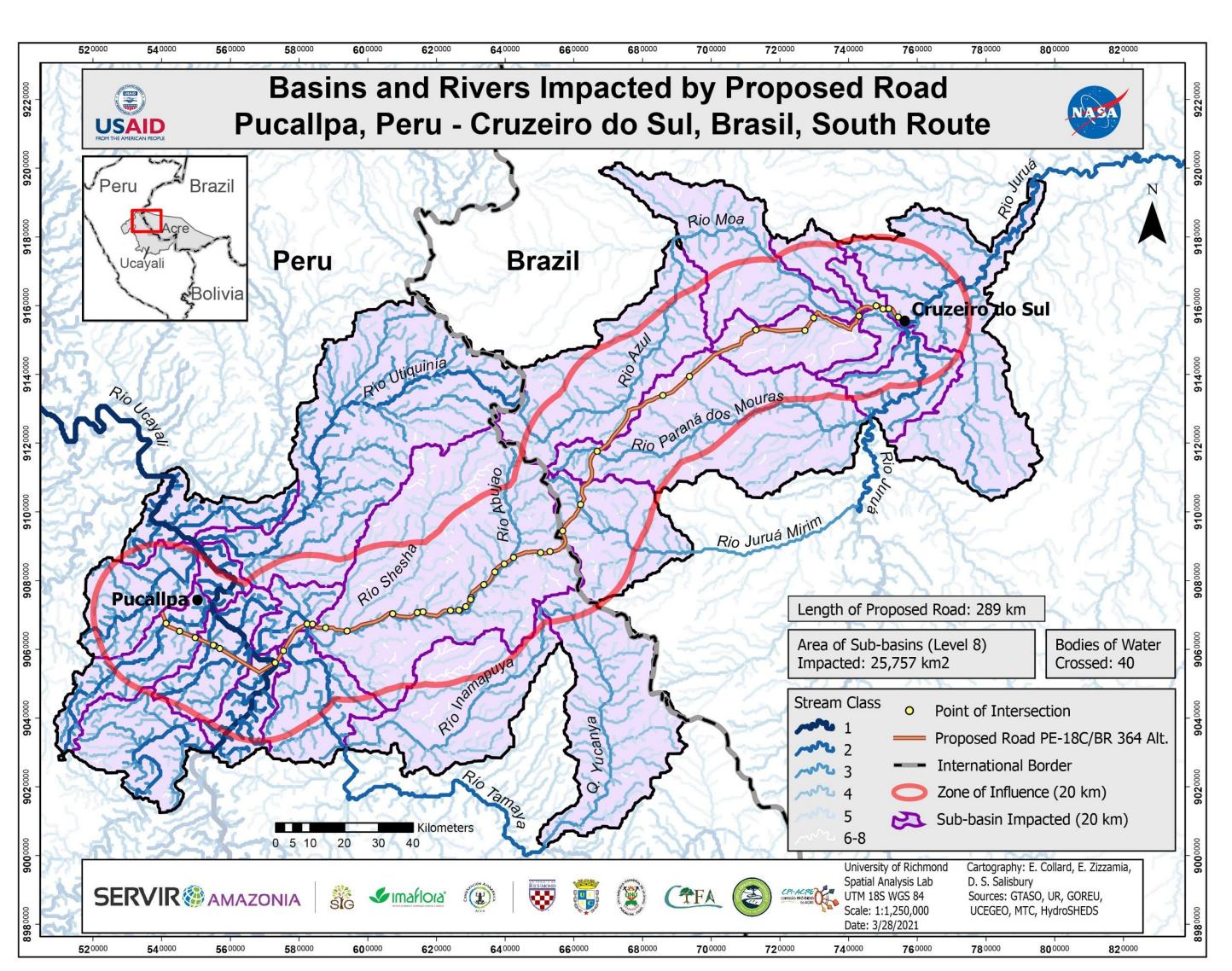


Figure 2. Analysis of potential impacts on rivers and watersheds from the proposed road BR-364/PE-18C (south/Peruvian-based route) within a 20 km impact zone (highlighted in red).

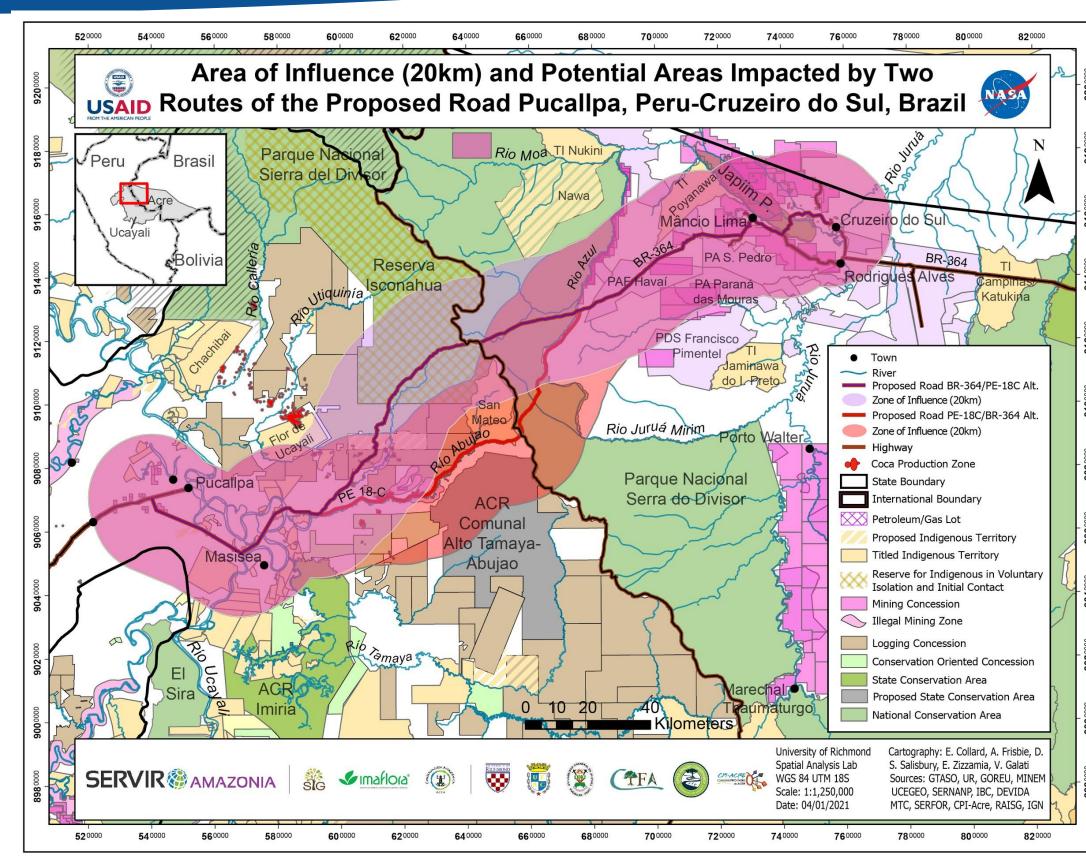
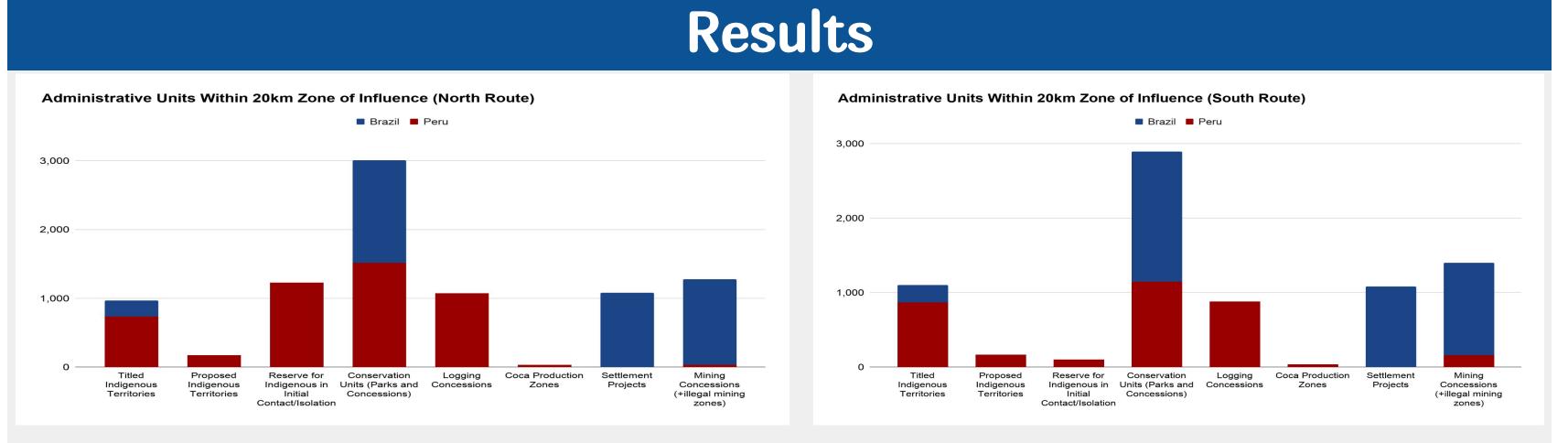



Figure 3. Analysis of potential impacts on administrative units from the North and south routes of a proposed road connecting Pucallpa, Peru and Cruzeiro do Sul, Brazil (BR-364/PE-18C) within 20 km impact zones (highlighted in pink and purple)

Stream Class	# Intersections (South Route)	# Intersections (North Route)
1	1	1
2	3	3
3	9	8
4	20	13
5	5	5
6	2	1
Total	40	24

Figure 4 (top left). Total area (km²) of administrative units located within the 20km impact zone of the proposed road BR-364/PE-18C Alt. (north/Brazilian-based route) in Brazil and Peru.

Figure 5 (top right). Total area (km²) of administrative units located within the 20km impact zone of the proposed road BR-364/PE-18C (south/Peruvian-based route) in Brazil and Peru.

Table 2 (left). Count of stream crossing by stream class (classical ordering) for each proposed route.

Discussion

- The use of spatial analysis allows for an objective representation of the consequences of road building for stakeholders, informing local community members and policy makers.
- This road continues to remain a talking point for Brazilian and Peruvian governments, thus requiring persistent and renewed analysis and discussion.
- The disconnect and lack of foresight in the road planning between both governments further exposes a lack of cooperation and information on both sides regarding this road proposal.
- As roads through remote Amazonian regions continue to be proposed, further research is necessary to explore the potential cultural and ecological impacts of road-building in these areas.

